Assignment is about Heat transfer & thermodynamics expert simulation through different types of PV integrated roof

Home, - Heat transfer and thermodynamics expert simulation of heat transfer through different type


The researchbelow focuses on heat transfer and thermodynamics expert simulation. There are ways in which the use of simulation in implementing the PV/T assists in coming up with an effective software. The modules and the integration on PV/T are always complex since the heat and electricity that pass through the elements are off higher amount. When damage occurs, it turns out to be costly and therefore simulating the software before the actual implementation is important. The proposal explains how the PV/T system is generally made and apart from that, it illustrates the importance of the expert simulation in coming up with the heat transfer system. 

According to Akata et al. (2017: pp.1145), in many buildings across the world, several modules of photovoltaic (PV) has been constructed in every part of the building in order to generate power. Consequently, some new ideas have been innovated in the recent days. The concept includes the use of thermodynamics together with the photovoltaic (PV). The idea is so imperative since up to then, the once who have taken the idea serious have shown an improvement in terms of efficiency whereby the wasted heat from PV modules is directed to other serious functions. Ávila et al. (2016) argues that,when making use of both thermodynamics and the photovoltaic, the cells from the PV are brought together with the collectors from the solar. The system now works efficiently for heat transfer. When the two aspects are brought together, PV and the thermodynamics, it forms a hybrid generating system. At this point, the hybrid system is able to generate two components, electricity and the heat of low temperatures (Dupeyrat et al.2014: p.752). 

Several studies and experiments have clearly shown that the combination of thermodynamics and photovoltaic is able to generate both air and water type, collectors according to Sharafand Orhan (2018). However, according to many studies, the P/T which is air cooled is the best cost-effective system for an integrated P/T system. When constructing an integrated photovoltaic and thermodynamic system, the air gaps that exist between the modules plus the fabric is applied to circulate the air in a cooler manner. On the other hand, the preheated air can be made of importance whereby, it is used to come up with the thermodynamic needs. 

Apparently, when constructing a PV/T, the collectors used should be more ventilated photovoltaic. The property does not only bring about efficiency but also save the cost of implementing the integrated system. There are several heats that come from the system. For instance, sources like heated air, hot water, and electricity all produce heat, therefore, the need for a ventilated system might not be avoided in any circumstance. Another important element that is evident during the construction of an integrated is ensuring an air gap. The air gap assists in several ways, the one way is that the system may lack a fan and the air gap will act like the air which directs both cold and hot air on the necessary paths. 

When configuring the PV/T system in buildings, it must be done in an efficient manner. There exists various modification during configuration that assists in system configuration. The modifications take into account the process of generating heat and transfer of that particular amount of heat.  There exist various ways of extracting heat in order to improve the efficiency of the transfer of heat. The techniques for collecting the heat vary. Many systems according to the study have adopted the common ways such as the use of porous plates, fins and the airflow passage packed together. One may not incorporate all these techniques into one system. However, some factors may determine whether to incorporate them or not. The factors include the size of your system, the time available to implement the system and lastly what the project targets. 

When physically implementing the integrated roofs in PV system, it is often evident that there is encapsulation of the strings. The rings tend to form structures called the module. During the simulation process, the modules are well elaborated on how heat would transfer from one point to another. Various modules are made up of some cells or rather roofs. The first common type of roof or panel is the amorphous silicon photovoltaic panels. These types of panels are usually constructed by the use of silicon on a thin flat layer. It does not emphasize on the creation of very rigid structures. The other common type of roof panel is the thick film silicon photovoltaic roofs. These types of roofs are constructed by implementing a large base silicon deposit having shiny top. All the roofs are well illustrated during the simulation process and how their structure looks like before the actual construction of the heat transfer system. 

Background/objective of the research

The research aims at coming up with a system that can withstand a high amount of heat generated in the PV/T system. From quite a number of studies, it is mainly challenging to come up with a product or system as a whole that is able to work and sustain the extreme temperatures in and heat in PV/T systems. Therefore, to build a system or a product of high quality within a timeline, simulation is an important activity before the actual implementation of the system. Simulating assist the experts and a group of engineers to create a complex system within the set deadline. Customers come with varying goals and want, accommodating all the preferences of a customer can be challenging. For instance, one may develop a system to completion but forgets to incorporate a serious feature that the customers require. However, with the simulation, the system is corrected severally before implementing its use on the practical world. 

Consequently, Kalogirou (2017) says that, the simulation does not only assist in coming up with a complex system but also optimizing on the requirements of the system. For instance, there exist various components in the simulation stage e.g. pumps, valves, compressors, exchangers evaporators among other components. When using a system of simulation, it is possible to evaluate optimum number, the position of elements, dimension and most importantly knowing which group of the components can be easily combined to come up with an effective system. Apart from that, the research will also show that by the use of the simulation, the flow rates, pressure as well as the direction flow of heat can be easily determined before the actual implementation of the plan in reference to Gu et al. (2014: p.30). The research will enable most of the companies to save on the cost of buying extra material or just paying for an extra work which would have been there if the simulation would have been carried out before the actual implementation of the system. There are calculations are easy to implement to implement in the simulation. For instance, velocity, heat transfer, temperature, and pressure mainly affect the outcome of air conditioning and the energy flow, all these are taken into account when the simulation is implemented before physical construction according to Harishand Kumar (2016: pp.1180).

There exist different types of PV integrated roofs during simulation. The first one is the photovoltaic roof shingles and tiles. The roof type brings together modules without the use of fame. Secondly, there are photovoltaic modules for the flat roofs. The simulation enables one to implement the system in this module and other more types of roofs.

Khelifa et al. (2016: p.172) says that,simulation is very crucial in today’s world due to the increasing technology in the world. However, Liet al (2018) emphasizes that, it is very important to analyze the needs of the PV/T system before the implementation begins. Several organizations who implement the simulation process before the physical deployment get less query from the customers and most of them create even more complex systems. However, one should take caution since simulation is a virtual device and sometimes there can be needed to change specific needs to conform to the technological world in reference to Michael et al. (2015). When it is evident that the initial process of the system is quite more expensive, it saves the entire organization from doing the same job several times configuring the heat transfer patterns among many other features. 

Leave a comment


Related :-